라벨이 주식예측인 게시물 표시

2025년 국내 은행 업권의 AI 기반 사업 현황

이미지
2025년 국내 은행 업권의 AI 기반 사업 현황 2025년 국내 주요 은행들은 AI 기술을 활용하여 금융 서비스의 혁신과 효율성을 극대화하고 있습니다. 각 은행은 생성형 AI, 머신러닝, XAI 등을 활용하여 고객 경험 개선, 내부 업무 자동화, 신용평가 고도화 등 다양한 영역에서 AI 기반 서비스를 도입하고 있습니다. 은행별 주요 AI 기능 및 서비스        은행 주요 기능 및 서비스 진행 일정 신한은행 - AI 뱅커 기반 ‘디지털 데스크’와 무인점포 ‘AI 브랜치’ 운영- 감정 인식 분석을 통한 금융사고 예방 - 생성형 AI 기반 투자 및 금융지식 Q&A 서비스 2024년부터 점포 확대 및 2025년 상반기까지 생성형 AI 플랫폼 구축 예정 • 생성형   AI  기반  AI  은행원 • 생성형   AI  투자 및  금융지식  Q&A  서비스 NH농협은행 - 모든 영업점에 AI 뱅커 배치 -  AI  금융상품 추천 서비스 출시 ( XAI)   XAI를 활용한 금융상품 추천 서비스- 외국인 및 고령층을 위한 상담 서비스 제공 - 기업 대출 심사  AI  도입 2024년부터 적용 시작, 2025년까지 전국 확대 • 생성형   AI  플랫폼 기반 금융서비스 KB국민은행 • AI  금융비서 서비스 베타  오픈 - ‘리브 넥스트’의 AI 금융비서 베타 서비스- KB-GPT 및 KB-AI OCR 기술 활용- 생성형 AI 금융상담 Agent 도입 • 의심거래 보고 (STR) AI  적용 2024년부터 PoC 진행, 2025년 상반기까지 상용화 예정 • 생성형   AI  플랫폼 기반 금융서비스 우리은행 - ‘우리WON뱅킹’ 내 대출 상담 확장- 이상 외화 송금 탐지 프로세스 도입 • 생성형   AI  기반 ...
이미지
  [인공지능] Meta AI LLaMA 모델을 사용하여 주식 예측 프로그램 만들기 Meta AI (Facebook)의 LLaMA 모델을 사용하여 주식 예측 프로그램을 작성하는 방법을 소개하겠습니다. LLaMA 모델은 Meta에서 개발한 대규모 언어 모델로, 다양한 자연어 처리 작업에 활용될 수 있습니다. 주식 예측 프로그램을 작성하기 위해서는 주식 데이터를 가져오고, 이를 LLaMA 모델에 입력하여 예측을 수행하는 과정을 포함합니다. 다음은 Python을 사용하여 LLaMA 모델을 활용한 주식 예측 프로그램의 예제 코드입니다: import yfinance as yf import matplotlib.pyplot as plt import torch from transformers import LlamaForCausalLM, LlamaTokenizer # 주식 데이터를 가져오는 함수 def fetch_stock_data (ticker, start_date, end_date) : stock = yf.download(ticker, start=start_date, end=end_date) return stock # 주식 차트를 그리는 함수 def plot_stock_chart (stock_data, ticker) : plt.figure(figsize=( 12 , 6 )) plt.plot(stock_data[ 'Close' ], label= f' {ticker} Closing Price' ) plt.title( f' {ticker} Stock Price Chart' ) plt.xlabel( 'Date' ) plt.ylabel( 'Price' ) plt.legend() plt.grid() plt.show() # LLaMA 모델을 사용하여 주식 예측을 수행하는 함수 def analyze_s...

이 블로그의 인기 게시물

[좋은글] 나침반의 바늘이 흔들리는 한 그 나침반은 틀리는 일이 없다 - 신영복

( 경영전략,사업전략 ) 마이클 포터의 가치사슬 분석(Value Chain Analysis) 이론

[Ubuntu]Linux Tunning -네트워크 커널 매개 변수 최적화