라벨이 그래프RAG인 게시물 표시

2025년 국내 은행 업권의 AI 기반 사업 현황

이미지
2025년 국내 은행 업권의 AI 기반 사업 현황 2025년 국내 주요 은행들은 AI 기술을 활용하여 금융 서비스의 혁신과 효율성을 극대화하고 있습니다. 각 은행은 생성형 AI, 머신러닝, XAI 등을 활용하여 고객 경험 개선, 내부 업무 자동화, 신용평가 고도화 등 다양한 영역에서 AI 기반 서비스를 도입하고 있습니다. 은행별 주요 AI 기능 및 서비스        은행 주요 기능 및 서비스 진행 일정 신한은행 - AI 뱅커 기반 ‘디지털 데스크’와 무인점포 ‘AI 브랜치’ 운영- 감정 인식 분석을 통한 금융사고 예방 - 생성형 AI 기반 투자 및 금융지식 Q&A 서비스 2024년부터 점포 확대 및 2025년 상반기까지 생성형 AI 플랫폼 구축 예정 • 생성형   AI  기반  AI  은행원 • 생성형   AI  투자 및  금융지식  Q&A  서비스 NH농협은행 - 모든 영업점에 AI 뱅커 배치 -  AI  금융상품 추천 서비스 출시 ( XAI)   XAI를 활용한 금융상품 추천 서비스- 외국인 및 고령층을 위한 상담 서비스 제공 - 기업 대출 심사  AI  도입 2024년부터 적용 시작, 2025년까지 전국 확대 • 생성형   AI  플랫폼 기반 금융서비스 KB국민은행 • AI  금융비서 서비스 베타  오픈 - ‘리브 넥스트’의 AI 금융비서 베타 서비스- KB-GPT 및 KB-AI OCR 기술 활용- 생성형 AI 금융상담 Agent 도입 • 의심거래 보고 (STR) AI  적용 2024년부터 PoC 진행, 2025년 상반기까지 상용화 예정 • 생성형   AI  플랫폼 기반 금융서비스 우리은행 - ‘우리WON뱅킹’ 내 대출 상담 확장- 이상 외화 송금 탐지 프로세스 도입 • 생성형   AI  기반 ...

Graph RAG의 주요 특징

이미지
  Graph RAG의 주요 특징 1. 지식 그래프 활용: 텍스트에서 엔티티와 관계를 추출하여 지식 그래프를 생성하고 이를 기반으로 정보를 검색 및 생성. 노드(개체)와 엣지(관계)를 통해 데이터 간의 복잡한 연결성을 명확히 표현 2. 정보 간 관계 이해: 검색된 정보들 간의 관계를 그래프 구조로 모델링하여 맥락과 상호작용을 더 깊이 이해 이를 통해 더욱 일관성 있고 논리적인 텍스트 생성 가능 3.효율적인 데이터 처리: 대규모 데이터셋에서도 계층적 클러스터링과 그래프 순회를 통해 효율적으로 정보를 검색하고 처리 복잡한 데이터 간 연결성을 유지하며 정확한 답변 제공 4추론 능력 강화: 정보 간 관계를 기반으로 새로운 결론 도출 가능, 단순 검색 이상의 고차원적 질문 응답 성능 제공 5.유연성과 확장성: 다양한 데이터 구조와 관계를 처리할 수 있어 복잡한  6 도메인 지식에도 적합 Graph RAG는 기존 RAG 모델의 한계를 극복하며, 정보 검색과 생성의 정확성, 효율성을 크게 향상시키는 혁신적인 접근법입니다. 인용:

이 블로그의 인기 게시물

[좋은글] 나침반의 바늘이 흔들리는 한 그 나침반은 틀리는 일이 없다 - 신영복

( 경영전략,사업전략 ) 마이클 포터의 가치사슬 분석(Value Chain Analysis) 이론

[Ubuntu]Linux Tunning -네트워크 커널 매개 변수 최적화