2025년 국내 은행 업권의 AI 기반 사업 현황

이미지
2025년 국내 은행 업권의 AI 기반 사업 현황 2025년 국내 주요 은행들은 AI 기술을 활용하여 금융 서비스의 혁신과 효율성을 극대화하고 있습니다. 각 은행은 생성형 AI, 머신러닝, XAI 등을 활용하여 고객 경험 개선, 내부 업무 자동화, 신용평가 고도화 등 다양한 영역에서 AI 기반 서비스를 도입하고 있습니다. 은행별 주요 AI 기능 및 서비스        은행 주요 기능 및 서비스 진행 일정 신한은행 - AI 뱅커 기반 ‘디지털 데스크’와 무인점포 ‘AI 브랜치’ 운영- 감정 인식 분석을 통한 금융사고 예방 - 생성형 AI 기반 투자 및 금융지식 Q&A 서비스 2024년부터 점포 확대 및 2025년 상반기까지 생성형 AI 플랫폼 구축 예정 • 생성형   AI  기반  AI  은행원 • 생성형   AI  투자 및  금융지식  Q&A  서비스 NH농협은행 - 모든 영업점에 AI 뱅커 배치 -  AI  금융상품 추천 서비스 출시 ( XAI)   XAI를 활용한 금융상품 추천 서비스- 외국인 및 고령층을 위한 상담 서비스 제공 - 기업 대출 심사  AI  도입 2024년부터 적용 시작, 2025년까지 전국 확대 • 생성형   AI  플랫폼 기반 금융서비스 KB국민은행 • AI  금융비서 서비스 베타  오픈 - ‘리브 넥스트’의 AI 금융비서 베타 서비스- KB-GPT 및 KB-AI OCR 기술 활용- 생성형 AI 금융상담 Agent 도입 • 의심거래 보고 (STR) AI  적용 2024년부터 PoC 진행, 2025년 상반기까지 상용화 예정 • 생성형   AI  플랫폼 기반 금융서비스 우리은행 - ‘우리WON뱅킹’ 내 대출 상담 확장- 이상 외화 송금 탐지 프로세스 도입 • 생성형   AI  기반 ...

Graph RAG의 주요 특징


 

Graph RAG의 주요 특징

1. 지식 그래프 활용:

텍스트에서 엔티티와 관계를 추출하여 지식 그래프를 생성하고 이를 기반으로 정보를 검색 및 생성.
노드(개체)와 엣지(관계)를 통해 데이터 간의 복잡한 연결성을 명확히 표현


2. 정보 간 관계 이해:
검색된 정보들 간의 관계를 그래프 구조로 모델링하여 맥락과 상호작용을 더 깊이 이해
이를 통해 더욱 일관성 있고 논리적인 텍스트 생성 가능

3.효율적인 데이터 처리:
대규모 데이터셋에서도 계층적 클러스터링과 그래프 순회를 통해 효율적으로 정보를 검색하고 처리
복잡한 데이터 간 연결성을 유지하며 정확한 답변 제공


4추론 능력 강화:
정보 간 관계를 기반으로 새로운 결론 도출 가능, 단순 검색 이상의 고차원적 질문 응답 성능 제공


5.유연성과 확장성:
다양한 데이터 구조와 관계를 처리할 수 있어 복잡한 


6 도메인 지식에도 적합
Graph RAG는 기존 RAG 모델의 한계를 극복하며, 정보 검색과 생성의 정확성, 효율성을 크게 향상시키는 혁신적인 접근법입니다.



인용:

댓글

이 블로그의 인기 게시물

( 경영전략,사업전략 ) 마이클 포터의 가치사슬 분석(Value Chain Analysis) 이론

[좋은글] 나침반의 바늘이 흔들리는 한 그 나침반은 틀리는 일이 없다 - 신영복

Kraken api - get token with python