라벨이 생성형AI인 게시물 표시

( 경영전략,사업전략 ) 마이클 포터의 가치사슬 분석(Value Chain Analysis) 이론

이미지
( 경영전략,사업전략 ) 마이클 포터의 가치사슬 분석(Value Chain Analysis) 이론 ​ ​ #경영전략 #기업혁신전략 #가치창출전략 #생산유통전략 #가치사슬이론 #오픈이노베이션 #개방혁신전략 ​ ​ ​ 신사업을 하려면 사업 전략 기획 뿐아니라 프로그램을 개발하는 개발자도 경영 전략에 대한 인사이트가 필요 합니다. ​ ​ 시장에 대한 기회요인과 필요한 기술을 찾고 투입 되는 생산 비용과 효율성을 확보하는 것은 디지털 기업이 성공하는 필수적이고 핵섬적인 전략 요소가 될 것입니다. (실패하지 않으려면) (경영전략.사업전략) 기업의 가치 창출 전략 이론 ​ (1) 마이클 포터의 가치사슬 분석(Value Chain Analysis) (2) 자원 기반 관점 (Resource-Based View, RBV) 역량 확보 전략 (3) 헨리 체스브로(Henry Chesbrough) 개방형 혁신(Open Innovation) 이론 (4) 블루 오션 전략 (Blue Ocean Strategy) https://couplewith.tistory.com/668 마이클 포터의 가치사슬 분석(Value Chain Analysis) 이론 마이클 포터의 가치사슬 분석(Value Chain Analysis)은 기업의 활동을 여러 단계로 나누어 각 단계에서 가치를 창출하는 방식을 분석하는 도구입니다. ​ 이 기법은 1985년 마이클 포터가 제안한 것으로, 기업 내부의 활동을 기본 활동과 지원 활동으로 구분하여 분석합니다. 이를 통해 기업은 각 활동에서 발생하는 비용과 가치를 파악하여 경쟁력을 강화할 수 있습니다. ​ ​ 1. 기본 활동 (Primary Activities) 2. 지원 활동 (Support Activities) ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 1. 기본 활동 (Primary Activities) ​ ​ 1.1.내부 물류 (Inbound Logistics) ​ 설명: 원재료의 수급 및 저장, 재고 관리 등을 포함합니다. 예시: 자동차 제조업체...

CLIP 모델을 사용하여 이미지를 텍스트로 변환하는 함수

CLIP 모델은 이미지와 텍스트를 모두 처리할 수 있는 모델입니다. 이 모델을 사용하면 이미지와 텍스트를 멀티모달로 동시에 고려할 수 있습니다.  예를 들어, CLIP 모델을 사용하여 이미지를 텍스트로 변환하는 함수를 작성할 수 있습니다. 이 함수는 다음과 같은 코드로 작성할 수 있습니다: ```python from PIL import Image from transformers import CLIPProcessor def image_to_text(image_path):     # 이미지를 텍스트로 변환하는 코드 (CLIP 모델 활용)     image = Image.open(image_path)     clip_processor = CLIPProcessor()     inputs = clip_processor(text=["a photo of", "a picture of"], images=image, return_tensors="pt")     outputs = clip_model(**inputs)     # 이미지 설명 추출     image_description = clip_processor.decode(outputs.logits_per_image, top_k=1)[0]     return image_description ``` 이 함수는 이미지 파일을 입력으로 받아 해당 이미지의 설명을 반환합니다. 이 함수를 사용하려면 `CLIP` 모델과 `clip_processor`를 설치해야 합니다. 이 모델과 프로세서는 Python 패키지 `Hugging Face Transformers`에서 제공됩니다. 이 패키지를 설치하면 `clip_processor`를 사용할 수 있습니다.  CLIP 모델의 다양한 예시와 사용 방법에 대해서는 인터넷에서 찾아볼 수 있습니다. CLIP 모델과 clip_processor 프로세...

인공지능- 음악을 작곡하는 AI도구

이미지
   인공지능 - 음악을 작곡하는 AI도구 [생성형 음악 제작 도구] 1. AudioCraft 2. OpenAI Jukebox 와 MuseNet 3. Amper Music 4. Soundful 5. AIVA (Artificial Intelligence Virtual Artist) 6. Ecrett Music 7. Soundraw 8. Amadeus Code   가트너의 설문조사에 따르면, 인공지능을 사용한 적이 있는 기업의 55%는 새로운 애플리케이션을 개발할 때 이미 인공지능을 우선시하는 것을 목표로 삼고 있다고 합니다.  그만큼 인공지능의 시대는 가속화 되고 있습니다. 최근 몇 년 동안 언어 모델을 포함한 생성 AI 모델은 질문에 대한 텍스트 설명이나 요약에서 부터 음성 모델, 이미지 및 비디오 생성까지 지원되고 있습니다. 이미지나, 텍스트에 대한 기계학습은 이미 많은 발전이 되었습니다. 앞으로 복잡한 음성에 대한 학습도 지속적인 성장이 이루어 질 전망입니다.  인공지능은 비즈니스 까지 활용되는 보편화의 시대로 접어 들었고 예술 분야에도 많은 변화가 진행되고 있습니다. 앞으로 전문 음악가가 악기를 연주하지 않고도 새로운 작곡을 할 수 있는 시대도 현실화 되고 있습니다.     음악 생성 AI 도구 모음   1.  AudioCraft  -  https://audiocraft.metademolab.com/ (소개)  -  https://github.com/facebookresearch/audiocraft  (소스코드) 최근 Meta(페이스북)는  AudioCraft라는 음악, 음향 효과, 압축등 생성 오디오 도구를 발표했습니다.  MusicGen , AudioGen 및 EnCodec 고 구성된 Audio Craft로 사용자가 원하는 스타일의 음악이나 음향 효과음을 생성 할 수 있습니다. 사용자는...

이 블로그의 인기 게시물

SSL/TLS 인증서 오류를 해결- 리눅스명령모음 - SSL certificate problem

(truffle 환경 설정) 스마트 계약 배포 와 truffle deploy 오류 해결 - Error: Could not find artifacts for SimpleStorage from any sources

자기주권 신원 (SSI Self-Sovereign Identity) 인증의 발전 그리고 정보 민주화 (Information Democratization)