라벨이 멀티모달인 게시물 표시

2025년 국내 은행 업권의 AI 기반 사업 현황

이미지
2025년 국내 은행 업권의 AI 기반 사업 현황 2025년 국내 주요 은행들은 AI 기술을 활용하여 금융 서비스의 혁신과 효율성을 극대화하고 있습니다. 각 은행은 생성형 AI, 머신러닝, XAI 등을 활용하여 고객 경험 개선, 내부 업무 자동화, 신용평가 고도화 등 다양한 영역에서 AI 기반 서비스를 도입하고 있습니다. 은행별 주요 AI 기능 및 서비스        은행 주요 기능 및 서비스 진행 일정 신한은행 - AI 뱅커 기반 ‘디지털 데스크’와 무인점포 ‘AI 브랜치’ 운영- 감정 인식 분석을 통한 금융사고 예방 - 생성형 AI 기반 투자 및 금융지식 Q&A 서비스 2024년부터 점포 확대 및 2025년 상반기까지 생성형 AI 플랫폼 구축 예정 • 생성형   AI  기반  AI  은행원 • 생성형   AI  투자 및  금융지식  Q&A  서비스 NH농협은행 - 모든 영업점에 AI 뱅커 배치 -  AI  금융상품 추천 서비스 출시 ( XAI)   XAI를 활용한 금융상품 추천 서비스- 외국인 및 고령층을 위한 상담 서비스 제공 - 기업 대출 심사  AI  도입 2024년부터 적용 시작, 2025년까지 전국 확대 • 생성형   AI  플랫폼 기반 금융서비스 KB국민은행 • AI  금융비서 서비스 베타  오픈 - ‘리브 넥스트’의 AI 금융비서 베타 서비스- KB-GPT 및 KB-AI OCR 기술 활용- 생성형 AI 금융상담 Agent 도입 • 의심거래 보고 (STR) AI  적용 2024년부터 PoC 진행, 2025년 상반기까지 상용화 예정 • 생성형   AI  플랫폼 기반 금융서비스 우리은행 - ‘우리WON뱅킹’ 내 대출 상담 확장- 이상 외화 송금 탐지 프로세스 도입 • 생성형   AI  기반 ...

CLIP 모델을 사용하여 이미지를 텍스트로 변환하는 함수

CLIP 모델은 이미지와 텍스트를 모두 처리할 수 있는 모델입니다. 이 모델을 사용하면 이미지와 텍스트를 멀티모달로 동시에 고려할 수 있습니다.  예를 들어, CLIP 모델을 사용하여 이미지를 텍스트로 변환하는 함수를 작성할 수 있습니다. 이 함수는 다음과 같은 코드로 작성할 수 있습니다: ```python from PIL import Image from transformers import CLIPProcessor def image_to_text(image_path):     # 이미지를 텍스트로 변환하는 코드 (CLIP 모델 활용)     image = Image.open(image_path)     clip_processor = CLIPProcessor()     inputs = clip_processor(text=["a photo of", "a picture of"], images=image, return_tensors="pt")     outputs = clip_model(**inputs)     # 이미지 설명 추출     image_description = clip_processor.decode(outputs.logits_per_image, top_k=1)[0]     return image_description ``` 이 함수는 이미지 파일을 입력으로 받아 해당 이미지의 설명을 반환합니다. 이 함수를 사용하려면 `CLIP` 모델과 `clip_processor`를 설치해야 합니다. 이 모델과 프로세서는 Python 패키지 `Hugging Face Transformers`에서 제공됩니다. 이 패키지를 설치하면 `clip_processor`를 사용할 수 있습니다.  CLIP 모델의 다양한 예시와 사용 방법에 대해서는 인터넷에서 찾아볼 수 있습니다. CLIP 모델과 clip_processor 프로세...

이 블로그의 인기 게시물

[좋은글] 나침반의 바늘이 흔들리는 한 그 나침반은 틀리는 일이 없다 - 신영복

( 경영전략,사업전략 ) 마이클 포터의 가치사슬 분석(Value Chain Analysis) 이론

[Ubuntu]Linux Tunning -네트워크 커널 매개 변수 최적화