라벨이 VectorDB인 게시물 표시

MYSQL에서 제공하는 Vector Data 처리기능

이미지
  MYSQL에서 제공하는 Vector Data 처리기능 MySQL은 벡터 데이터 처리 기능을 내장하여 AI 기반 애플리케이션 개발을 지원합니다. 아래는 주요 기능과 사용 예시, 기존 벡터 DB 대비 장점을 정리한 내용입니다.     MySQL의 Vector DB 기능 1. 벡터 데이터 타입 지원 VECTOR(n) : n차원 벡터 저장 가능 (예: VECTOR(768) )[2][5]. 저장 방식 : VARBINARY 또는 리스트 형식 문자열로 4바이트 부동소수점 저장[2]. 크기 제한 : 2048~16383 차원 지원 (기본값 2048)[2].   2. 벡터 변환 함수 STRING_TO_VECTOR() : 문자열을 벡터로 변환 (예: '[1][2][3]' → 이진값)[2][5]. VECTOR_TO_STRING() : 이진 벡터를 문자열로 출력[2]. VECTOR_DIM() : 벡터의 차원 수 계산[2].   3. 유사도 계산 DISTANCE() : 코사인/유클리드/내적 유사도 계산 지원[2]. SELECT DISTANCE(embedding, '[1,2,3]' , 'COSINE' ) FROM books;     4. 벡터 연산 통합 표준 SQL 구문 : INSERT , UPDATE , JOIN 등 기존 SQL 문법과 호환[2][5]. 예시 테이블 생성 : CREATE TABLE books ( id INT PRIMARY KEY, title VARCHAR ( 60 ), embedding VECTOR( 768 ) USING VARBINARY );     사용 예시 1. 벡터 데이터 삽입 INSERT INTO books (title, embedding) VALUES ( 'AI 입문서' , STRING_TO_VECTOR( '[0.1,0.4,0.7]' ));   2. 유사도 검색 ...

데이터 과학과 프롬프트 엔지니어링 - SingleStore를 이용한 벡터DB

이미지
데이터 과학과 프롬프트 엔지니어링 - SingleStore를 이용한 벡터DB 데이터 과학과  프롬프트 엔지니어링   chatGPT로 인해 앞으로 인공 지능의 영역은 다음 두가지 영역으로 나누어 접근 할 수 있습니다.   -  데이터 과학(학문적/전문성)  :    학문적이고 전문성을 요구로 하는 인공지능 전문 분야 (머신러닝, 딥러닝의 데이터 분석)   - 프롬프트 엔지니어링 (생성형 AI 서비스대중화) :   AI 민주화에 따른  대중화된 서비스 AI 응용 개발 분야 ( LLM을 기반으로 서비스에 활용)   최근 몆년 동안  AI 분야는 데이터 과학(Data Science)라고 하면서  대규모 머신 장비와 고급 기술자(데이터사이언티스트)를 투입하여 방대한 데이터를 분석하는데 활용 했습니다. 이는 학문적이고 전문가에 의한 인공지능 분야으로 데이터 분석 분야가 대부분을 차지해 왔습니다.   chatGPT와 같은 프롬프트 엔지니어링 분야는 이제는 이러한  데이터사이언스 (Data Science)를 기반으로한 인공지능 영역과 별개로  인공지능을 이용한 생활의 편의기능 또는 문서, 언어의 특성을 이해하고 만들어진 LLM을 기반으로  대중화된 생성형 AI 서비스 영역이 부각 되고 있습니다.   chatGPT의 등장으로 AI민주화라는 용어가 현실화 되었습니다. 지금 인터넷 서비스 전반에서 AI를 활용하는 움직임을 엄청난 변화로 보입니다.  지금이야 말로 인공지능의 부흥기라고 여겨 질 만큼 많은 기업들이 AI는 서비스의 필수조건으로 인식 하고 있습니다.      오늘은 이러한 변화에서 지속적인 기술을 접목할 수 있는 SingleStore DBMS를 소개 하고자 합니다.       AI민주화를 위한 차세대 DBMS SingleStoreDB   Si...

이 블로그의 인기 게시물

[좋은글] 나침반의 바늘이 흔들리는 한 그 나침반은 틀리는 일이 없다 - 신영복

( 경영전략,사업전략 ) 마이클 포터의 가치사슬 분석(Value Chain Analysis) 이론

[Ubuntu]Linux Tunning -네트워크 커널 매개 변수 최적화